Order references ### Reagents | REF | | CONT | |-----------|---------------|----------------------------| | IGLCR-B00 | Universal kit | 1 x 50 ml R1 + 1 x 9 ml R2 | | IGLCR-H00 | Universal kit | 2 x 50 ml R1 + 2 x 9 ml R2 | #### Other necessary products | REF | | CONT | |-----------|------------------------------------|----------| | IGREK-000 | CSF IgG Calibrators Kit (5 Levels) | 5 x 1 ml | | IGCOS-002 | CSF IgG Low Control | 1 x 2 ml | | IGCON-002 | CSF IgG Medium Control | 1 x 2 ml | | IGCOX-002 | CSF IgG High Control | 1 x 2 ml | ## Field of application - Purpose In vitro diagnostic reagent for the quantitative determination of IgG in cerebrospinal fluid in samples of human origin by immunoturbidimetry on photometric systems. ## Medical benefit - Scientific validity In cerebrospinal fluid (CSF) immunoglobulins are normally present in small amounts. Raised IgG levels in cerebrospinal fluid can be observed in central nervous system (CNS) infections, an inflammatory syndrome, or in neurological conditions such as multiple sclerosis. A raised IgG concentration in cerebrospinal fluid may be due to hemato-meningeal damage and/or intrathecal IgG synthesis. Parallel dosages of albumin and IgG in serum and in cerebrospinal fluid make it possible to differentiate between these two mechanisms and to demonstrate an intrathecal IgG synthesis. # Method principle The IgG in cerebrospinal fluid contained in the sample to assay reacts specifically with anti-human IgG in cerebrospinal fluid antiserum and the turbidity induced by the formation of the antigen-antibody immune complex is measured at 570 nm and 800 nm. The measured turbidity is proportional to the IgG in cerebrospinal fluid concentration contained in the sample. # Warning and precautions - For in vitro diagnostic use only. - Must be handled by qualified personnel under the responsibility of a biologist. - The human-origin products have been screened and found negative for HIV 1 and 2 antibodies, HCV antibodies and HBAg, but they must nevertheless be handled as potentially infectious products. - These products contain sodium azide. Products containing sodium azide must be handled with care: avoid ingestion and contact with the skin or mucous membranes. - Sodium azide becomes explosive on contact with heavy metals such as copper or lead. ## Samples ### **Collection conditions** Collect specimens using standard laboratory techniques; use only suitable procedures, tubes or collection containers. ### Sample type Cerebrospinal fluid #### Storage and stability of specimens | Temperature | Stability | |-------------|--------------| | - 70 °C | Indefinitely | | - 20 °C | ≤ 6 months | | 4 °C | ≤ 72 hours | | | | This information comes from data originating from "Tietz Clinical Guide to Laboratory Tests" and from "WHO". ## Reagents ## Composition and concentrations/Storage Active components: Reagent R1: none Reagent R2: human G anti-immunoglobulins goat anti-serum (title ± 21.9 mg/ml). Other components: Reagent R1: buffer, polymer, inorganic salt and preservative. Reagent R2: buffer, inorganic salt and preservative. Conservation temperature: Reagent R1: 2 - 25 °C. Reagent R2: 2 - 8 °C. #### **Preparation** Ready to use. ## Storage and stability Reagents are stable until the expiration date printed on the packaging (months passed), under the following recommended storage and handling conditions: - Unopened vial stored at temperature indicated on packaging. - Opened vial: closed immediately after use or placed on closed analyser intended for this purpose, not contaminated by handling and stored at the temperature indicated on the packaging. #### Note: - Do not freeze the reagents. - Nanoparticle-based reagents can settle over time. It may be necessary to delicately mix by repeated turning. ## Other materials required Usual laboratory equipment including an analytical system equipped with a photometric detector. ## Calibration #### Calibration The calibration curve is performed by using the calibration kit indicated in the "Order references" section. The zero point of the calibration curve is performed with physiological saline solution. #### **Traceability** The method has been standardised with a benchmark method traceable to the international standard as described in the associated calibrators data sheet (see the "Order references" section). Calibrate the method when the reagent batch number changes or in case of change in performance (contact the manufacturer if the changes persist) or if quality control requires it. ## Quality control The frequency of controls and the confidence limits must be adapted to the laboratory requirements. The results must be within the defined confidence limits. Each laboratory shall establish corrective measures to be taken if results fall outside the defined limits. Comply with current legislation in the country and local guidelines relating to quality control. The calibration curve and its stability can be validated using the control materials indicated in the "Order references" section. ## Reference values | | Reference values | |---------------|------------------| | 15 - 20 years | ≤ 35 mg/L | | 21 - 40 years | ≤ 42 mg/L | | 41 - 60 years | ≤ 47 mg/L | | 61-87 years | ≤ 58 mg/L | International units: mg/L Conventional units: mg/dL This information coming from data originating from "Clinical guide to laboratory tests". Each laboratory must check the validity of its values and if necessary establish its own reference values, depending on the population examined. # Analytical performances The analytical performance data below are given as an indication. The results obtained in the laboratory may differ from these. The analytical performances were determined following the indications of the "Guide technique d'accréditation de vérification (Portée A)/validation (Portée B) des méthodes en biologie médicale"; document SH GTA 04 Révision 01. #### Measurement range 3,375 - 249,78 mg/L The measurement range is bounded by the quantification and linearity limits. Samples having a concentration greater than the upper limit must be diluted. ### Limit of detection 1,222 mg/L It is the smallest signal expressed as a quantity or concentration that can be distinguished with a given probability from a reagent blank performed in the same conditions. The evaluation of the limit of detection is based on the statistical analysis of the observed signal differences between the blanks and samples. #### Interferences (Analytical specificity) There is no known cross-reactivity of the antiserum cited or the antibodies used. The abnormally coloured and particle-containing samples can cause, depending on the analytical system, assay errors. These samples must be clarified chemically or physically before their assay. #### **Precision** The precision is evaluated using the repeatability (CV within-run) and reproducibility (CV within-calibration). | | Repeatability (n=30) | | Reproducibility (n=30) | | |---------|----------------------|--------|------------------------|--------| | | Average (mg/L) | CV (%) | Average (mg/L) | CV (%) | | Level 1 | 14,37 | 1,4 | 13,9 | 5,3 | | Level 2 | 51,68 | 0,7 | 52,33 | 1,5 | | Level 3 | 101,15 | 0,5 | 101,02 | 1,4 | #### **Trueness - Accuracy** Trueness, quantified by the bias, is estimated by comparing the mean obtained in the intermediate precision study, based on internal quality control samples, with the expected target value equated to the "true" value of the tested sample. Accuracy is defined as the closeness of agreement between a measured value and a true value of a measurand (quantity to be measured). DiAgam allows a bias of 5% compared to the international standard or compared to a reference method traceable to the international standard when it exists. ## Limitations of the method The results of this test should always be interpreted in relation to the patient's medical history, clinical signs and other findings. #### Prozone By limiting the linearity to the value of the upper limit of the measurement range, no excess antigen effect was observed for samples with a concentration up to 5970 mg/L. #### **Matrix effect** The inter-laboratory control samples and controls can yield different results from those obtained with other assay methods because of a matrix effect. In this case, an analysis of the results according to specific target values of the method utilised may be necessary. If in doubt, contact the manufacturer. # Utilisation procedure ## Literature - 1. Tietz Textbook of Clinical chemistry and molecular Diagnostics, fourth edition, edited by Carl A. Burtis, Edward R. Ashwood, David E. Bruns, 2006 - 2. Use of Anticoagulants in Diagnostic Laboratory Investigations & Stability of blood, plasma and serum samples. Publication WHO/DIL/LAB/99.1 Rev. 2. Jan. 2002. - 3. Clinical guide to laboratory tests, second edition, edited by Norbert W. Tietz, 1990 - 4. CLSI. Procedures for the Collection of Diagnostic Blood Specimens by Venipuncture; Approved Standard-Sixth Edition. CLSI document H3-A6 (ISBN 1-56238-650-6). CLSI, 940 West Valley Road, Suite 1400, Wayne, PA 19087-1898 USA; 2007. - 5. NCCLS. Procedures and Devices for the Collection of Diagnostic Capillary Blood Specimens; Approved Standard-Fifth Edition. NCCLS document H4-A5 [ISBN 1-56238-538-0]. CLSI, 940 West Valley Road, Suite 1400, Wayne, PA 19087-1898 USA, 2004. # Symbols legend The following symbols may appear on the packaging and the label: | LOT | Batch code | BUF | Buffer | |---------|------------------------------------|---------|---| | >< | Use until | CAL | Calibrator | | | Manufacturer | H | High | | IVD | In vitro diagnostic medical device | M | Moderate | | 1 | Temperature (Storage at) | L | Low | | REF | Catalogue reference | 4 LEV | 4 levels | | []i | Read the usage instructions | 5 LEV | 5 levels | | REAG | Reagent | 6 LEV | 6 levels | | KIT | Kit | CONTROL | Control | | CONT | Content | (€ | This product meets the requirements of | | Ab | Antibody or Antisera | | European Directive 98/79 EC concerning in
vitro diagnostic medical devices | | | DiAgam Belgium: Rue du Parc Industriel 40, 7822 Ghislenghien, Belgium | |---------------------|---| | DiAgam Headquarters | Avenue Louis Lepoutre 70, 1050 Bruxelles, Belgique | | Distributed by | DiAgam France: Boulevard de la Liberté 130, 59000 Lille, France | All product names, registered trademarks, company names in this document remain the property of their respective owners.